

GESTIONAREA EFICIENTĂ A STRESULUI TERMIC ÎN LIVEZI PRIN IMPLEMENTAREA UNOR TEHNOLOGII INOVATOARE DE IRIGARE SI BIOFERTILIZARE

EFFICIENT MANAGEMENT OF THERMAL STRESS IN ORCHARDS THROUGH THE IMPLEMENTATION OF INNOVATIVE IRRIGATION AND BIOFERTILIZATION TECHNOLOGIES

Matache Andreea, Nenciu Florin, Vanghele Nicoleta – Alexandra*, Pruteanu Augustina
National Institute of Research – Development for Machines and Installations Designed for Agriculture and
Food Industry – INMA Bucharest, Romania
*Corresponding author email: vanghelelrc@gmail.com

Abstract

In the context of climate change, improving orchard crop management is essential for effectively addressing the major challenges facing contemporary agriculture. Among these, the thermal stress generated by extreme temperatures and climate variability has an important negative impact on biodiversity, fertility, and soil health. In addition, it is vital to properly manage pests and pathogens that can affect crop quality and yield, as well as to adapt to hyper-intensive cultivation systems that aim to optimize the use of space and simplify harvesting processes. This study explores a number of alternative, sustainable, and effective technologies to improve productivity in orchards using advanced irrigation systems and the use of emergent biofertilizers. These agricultural technologies facilitate precise and efficient management of nutrients, water and biopesticide. The results of the conducted research have demonstrated that these innovative technologies can contribute to a significant long-term increase in productivity, as well as improve the quality of agricultural soils.

Cuvinte cheie: livezi, agricultură durabilă, schimbari climatice, biodiversitate

Key words: orchards, sustainable agriculture, climate change, biodiversity

1. Introduction

With a continuously growing world population estimated to reach 9 to 10 billion people by 2050, precision agriculture has become increasingly important for modern agricultural research. Innovative technologies applied in precision agriculture and data analysis are used to maximize crop yields, increase agricultural productivity, reduce waste, and reduce the negative impact on the environment (Karunathilake et al., 2023).

In recent decades, multiple studies have investigated the automation of tasks in an orchard, from establishment (Eceoğlu et al., 2024), cutting, pollination, and thinning (Lei et al., 2023), to spraying, harvesting and sorting (Verbiest et al., 2020; Mhamed et al., 2024). Fruit crops are vulnerable to climate change, and environmental stress. Often, the biodiversity of the soil in orchards and the ecosystem services that they offer are threatened by a series of natural and anthropogenic factors; therefore, it is essential to use sustainable alternatives in production management.

Establishing high-density orchards with small trees could reduce production costs and increase orchard sustainability. Precision horticulture is achieved using modern sensors and devices for monitoring production and diseases that suggest inputs for nutrition, irrigation, and phytosanitary guidelines (Manganaris et al., 2022). To reduce the effects of high heat, growers use various management methods such as evaporative cooling (EC), shade nets, and spray protectants (e.g., kaolin and calcium carbonate) (Amogi et al., 2023). Frost exposure and poor pollination pose major challenges to growing perennial orchard systems. Such climate risks are rather difficult to manage due to the complexity of future climate predictions and difficulties in quantifying the risks of late spring frost and poor pollination (Ru et al., 2023).

Therefore, innovation in orchard systems is essential. A series of technologies that would have a notable contribution in increasing productivity, sustainability, and efficiency in fruit cultivation could be: precision agriculture; data analysis and predictive modeling (Lassoued et al., 2021; Kunal et al., 2019); intelligent irrigation systems (Conesa et al., 2021; Millán et al., 2020); agroforestry and polyculture: the implementation of agroforestry practices that integrate fruit trees with other crops, increasing biodiversity, soil fertility and ecosystem services within orchard systems (Lovell et al., 2017; Yahya et al., 2022); Smart Farming applications (Ghobadpour et al., 2022); biological pest control: integrated pest management strategies using natural predators and beneficial organisms to control pests and diseases in fruit orchards, reducing reliance on chemical pesticides (Dara, 2019).

2. Material and methods

Globally, agriculture has been severely affected by climate change. Rising temperatures, day-night fluctuations, and seasonal instability of rainfall have led to an increase in extreme weather events such as flash floods, droughts, and disease outbreaks. The impact of climate change has triggered the need to adopt climate-smart adaptation systems to support year-round productivity and availability. Such adaptation technologies are presented in figure 1 (Ali et al., 2023).

The flowering period is one of the most used widely used indices of the negative impact of climate change on the biological processes of perennial plants. In this sense, over a long period of 40 years (1973-2016), the climatic trend and their influence on the flowering intensity of several varieties of apricot (*Prunus armeniaca* L.) grown in central Italy were evaluated. Most of the varieties analyzed and selected for different flowering periods showed significant flowering delays and reductions in flowering intensity. The varieties with early flowering had the largest average change of almost 12 days and a reduction in the intensity of flowering, which decreased to approximately 50% compared with the previous periods. The autumn-winter cold variability in recent years may have a negative impact in the future with possible geographical shifts of apricot cultivation areas to more suitable areas and considerable socioeconomic inference (Bartolini et al., 2019).

For the irrigation of agricultural crops, the need for water is continuously increasing from year to year, due to climate changes, and this situation may create problems in the future. The decrease in water resources requires the urgent implementation of measures to ensure their rational use.

The purpose of a study was to test in field conditions and adapt, where necessary, an automated irrigation system that allows the establishment of regulated deficit irrigation (RDI) strategies in a plum orchard. For this purpose, an automatic device was used with an algorithm that combines irrigation programming based on water balance with a feedback adjustment mechanism using 15 capacitive sensors for continuous soil moisture measurement. A drip irrigation system was used with, an irrigation strip per tree row located close to the base of the tree (figure 2) (Millán et al., 2019).

Fruits have been shown to contain significant levels of pesticide residues and chemical fertilizers harmful to human health and the natural environment; therefore, it is necessary to develop alternatives to reduce the use of fertilizers in fruit trees (Al-Hchami et al., 2023). A series of studies have described possible ecological alternatives such as mycorrhizal fungi, organic compost, mulches, and biofertilizers.

3. Results and discussions

3.1. Innovative irrigation technologies

An automatic intelligent drip irrigation system for crop irrigation has been developed, where a smartphone first takes a picture of the soil, calculates its moisture level, and periodically transmits data to the microcontroller through a GSM module. Using the smart irrigation system saved about 42% and 15% of the water consumption of traditional and drip irrigation methods (Djalilov et al., 2022). Establishing a strategy of regulated deficit irrigation (RDI) avoided, water stress in the more sensitive stages of the variety and induced moderate to severe stress in the less sensitive stages, table 1 (Millán S. et al., 2019). The application of new irrigation techniques that save water without changing the performance of trees and the quality of fruits represents a challenge in the field of research.

A study investigated the effect of applying three different treatments on the better management of irrigation water without affecting the functions of trees. In addition to better management of irrigation water, CDI also improved the quality of fruits by increasing the content of vitamin C and sugar both in the skin and pulp (Guizani et al., 2019). Agriculture considerably reduces water reserve through irrigation; therefore, at, the global level, scientists have analyzed sustainable solutions applying innovative techniques to reduce high water consumption and avoid losses.

In the specialized literature, a series of technologies (unmanned aerial vehicles (UAV), machine learning (ML), and the Internet of Things (IoT)) have been presented, which have demonstrated their great potential in precision agriculture and irrigation management (table 3) (Ahansal et al., 2022). According to the Food and Agriculture Organization of the United Nations (FAO), agriculture is the world's largest consumer of water in terms of volume, but also a low-value and efficient user of water. This is why there is a need to implement smart irrigation systems. Researchers present an intelligent irrigation system based on the Internet of Things and cloud computing architecture. Machine learning algorithms have been used to predict the appropriate amount of fresh water needed for a crop to be grown. As a result, by applying this system, significant amounts of fresh water are saved (Phasinam et al., 2022). Water and fertilization management are farmers' main concerns in obtaining high fruit quality and economic yield.

Fertilization management is essential not only for ensuring high productivity and fruit quality, but also for maintaining soil health and water resources (Maatallah et al., 2024). Considering the influence of climate on plant diseases, which can alter host physiology, resistance, and pathogen development rates, sustaining fruit tree productivity is a major concern for farmers.

Two treatments were applied to an early maturing nectarine orchard: control (well irrigated) and precise deficit irrigation (PDI, based on soil water content thresholds). Precision deficit irrigation based on soil water content (SWC) used 40% less total irrigation volume than a traditionally scheduled treatment with no yield penalty in early maturing nectarine trees (Conesa et al., 2019). It is known that during the ripening period of fruit, the temperature difference between the day and night of the orchard has a substantial impact on the quality of the fruit. In this sense, in a work Smart Orchard Internet of Things (IoT) was designed using, the fuzzy PID (Proportion-Integration-Differentiation) algorithm to control the spraying of water to regulate the temperature difference between day and night in the orchard. The technology had a special contribution to the energy conversion process in the orchard and promoted the accumulation of sugar from the fruits. The graph according to the temperature data is shown in figure 4 (Zhang et al., 2022). The results of a study determined that at a lateral depth of 30 cm subsurface drip irrigation (SSDI) can enhance the quality of fragrant pear, increase yield by 13.14% to 47.03%, and increase water productivity (WP) by 44.65% to 137.23% (Wang et al., 2024).

According to the analysis, average soil moisture content increased with lateral depth and irrigation amount. During 2021-2023, the impact of single-factor lateral depth on soluble solids, total sugar, vitamin C, sugar-acid ratio, solid-acid ratio, single fruit weight, and peel hardness was significant ($p < 0.05$) (Wang et al., 2024).

3.2. Biofertilization systems

A possible alternative to adapting trees to climate change is described in the specialized literature. For example, the effect of arbuscular mycorrhizal fungi on the growth indices of micropropagated pear rootstock improvement (Pyrodwarf) under drought stress were studied. Pear seedlings treated with arbuscular mycorrhizal fungi showed better acclimation, growth, and tolerance to normal and drought stress conditions (Srivastava et al., 2021).

Organic compost plays a particularly important role in sustainable management of agricultural practices. The yield of tree crops and the quality of fruits can be improved through organic fertilization, and interest in ecological products is continuously growing. In the future, it is estimated that obtaining superior quality of fruit will play an essential role in the market for certified organic products because of the higher prices obtained (Chatzistathis et al., 2021; Montanaro et al., 2017). Figure 6 shows the types of organic fertilizers that can be used to increase the productivity of tree crops; according to researchers, most of them play a vital role in increasing tree yields and partially replacing inorganic fertilizers (to decrease high fertilization rates (Chatzistathis et al., 2021).

In an experiment, the impact of the innovative organic fertilizers: Biolla, BioFeed Ecomix, Ausma biostimulation, and Mykoflor mycorrhizal inoculum on the growth characteristics of the fine roots of "Vanda" cherry was analyzed compared with mineral NPK fertilization. The results indicated that there were significant differences in the median root lifespan and, the visible number of roots between treatments. Fertilization with BioFeed Ecomix significantly extends the average lifespan of cherry roots. After applying the mycorrhizal substrate and Biolla fertilizer, several roots were observed, figure 7 (Głuszek et al., 2021).

Another study presents the influences of an innovative liquid product based on vermicompost enriched with selected strains of beneficial microorganisms (VCMo) on the morphometric characteristics (fruit weight, length and width), chemical properties (total phenolic and anthocyanin content, and antioxidant activity) and internal quality characteristics (soluble solids content and firmness) of the plum cultivars 'Stanley' and 'Čačanska Lepotica'. The results of this study show that liquid vermicompost enriched with selected strains of beneficial microorganisms (VCMo) has a significant potential in obtaining a sustainable production of plums and indicates the importance of adopting the declared growth technology as a powerful tool in orchard management (Pešaković et al., 2021). Table 4 presents specific examples of the application of plant growth-promoting bacteria (PGPB) in fruit orchards for different species can be found. In the case of apples, fruit yield (kg tr -1), was improved when PGPB was applied (12–13%) compared with the control (11%) Adaptation after (Freitas et al., 2022).

To study the effect of orchard grass and microbial preparations (MP), an experiment was carried out on calcareous alluvial meadow soil in Crimea. Grass mixtures (MH) were investigated: MH₂: multiflorous ryegrass + blue alfalfa; MH₃: meadow grass + meadow clover; MH₄: multifloral ryegrass + blue alfalfa + meadow fescue + meadow clover + awnless rump. The control was natural grass (NG). PM: Azotobacterin (AB) and Complex of Microbial Preparations (CMP) were used. The results show that the combination of MH₃ and CMP is most effective on the content of phosphorus and potassium and increasing the productivity of apples by 22-43% (Klimenko et al., 2021). Another research established that MPs increase the total nitrogen content of the leaves of apricot seedlings: Azotobacterin (AB) by 73%; mahaleb cherry: Diazophyte (DA) with 25%. The content of total phosphorus in the leaves of apricot and almond seedlings increased by 9-29% under the influence of Phosphoenterin (PE) and CMP compared with the control. Because of improving mineral nutrition in fruit plant seedlings using MP, the production of standard planting material per surface unit increased. The most effective treatments were PE on peach

and cherry seedlings, CMP on apricot and cherry plum (Klimenko et al., 2023). Azotobacter has also been analyzed by other researchers, who demonstrated its potential as a bio-fertilizer for soil and plant health management (Sumbul et al., 2020).

The aim of this study was to analyze the nitrogen in a Gala apple orchard in Trentino over a five-year trial period (2018-2022) under two agronomic managements: integrated (INT) fertilized once a year with mineral products and organic matter (ORG) amended with mature manure every three years. The use of organic matrices in organic farming, in addition to having an amendment effect, has been shown to act as a fertilizer in apple orchards, reducing environmental impact (Morelli et al., 2023).

An experiment carried out in an apricot orchard in Italy investigated whether the supply of biofertilizers could differently stimulate the native microbiota, thereby determining different patterns of organic material decomposition processes. After the application of two different types of biofertilizers (AMF and *Trichoderma spp.*) and comparison with the unfertilized control for one year, *Trichoderma spp.* showed faster and greater degradation of litter than the AMF biofertilizers. The results show that the foundation can be laid for efficient orchard use. AMF and *Trichoderma* biofertilizers were placed under the dropper closest to the plant through a syringe to simulate fertilization, and their effects are shown in table 5 (Baldi et al., 2021). Foliar application of *A. nodosum* seaweed extract on trees from an apple orchard produces a larger leaf surface and an increased photosynthetic capacity for organically grown apples (Mousavi et al., 2024).

In "Flordaprince" peaches, foliar or soil application of a humic acid solution (0.25-0.50%; 5 L per tree) significantly increased fruit size (Basile et al., 2020). The effect of biological fertilizers on the yield of apple crops was also demonstrated in a study that analyzed the potential for improving photosynthesis by applying bacteria such as Mucosas, Vertigo, Humus & Humus Active + Aktyvit pm in relation to N, P, and K, and the results were encouraging (Singh et al., 2020). In Serbia, a new formula has been developed for a liquid biofertilizer derived from vermicompost and enriched with different strains of beneficial microorganisms from the genera *Bacillus*, *Pseudomonas*, *Azotobacter*, and *Trichoderma*. The contribution of biofertilizers to increasing productivity, quality characteristics, and economic efficiency has been demonstrated with respect to ecological and health safety standards (Pešaković et al., 2023).

4. Conclusions

This paper demonstrates the urgent need to adopt alternative technologies and solutions to reduce the negative impacts of climate change and traditional agricultural practices on fruit crops. Thermal stress is one of the biggest challenges for farmers because it causes serious damage to fruit trees and soil in orchards. As agriculture is known as one of the largest consumers of water globally, intelligent irrigation is an important step toward making water management more efficient for agricultural crops. The presented solutions describe a series of advanced technologies that through the Internet of Things (artificial intelligence) and cloud computing architecture can develop complex systems: automated drip irrigation systems that have demonstrated the system's self-learning capacity, deficit irrigation strategies (CDI) with potential in managing irrigation water but also the ability to improve fruit quality, underground drip irrigation (SSDI), and web applications that manage databases collected from the field with the help of various devices (drones, sensors, IoT platforms).

In addition to intelligent irrigation systems, the fertilization of fruit crops with organic fertilizer has an essential role in improving vegetative growth, increasing tree productivity, and obtaining the healthiest vegetable products by reducing chemical residues. In conclusion, organic fertilization brings multiple benefits to agroecosystems by increasing productivity, improving physical properties and increasing soil fertility while respecting health safety and reducing environmental pollution.

These positive aspects encourage the field of research to obtain even more advanced solutions to improve the management of fruit crops.

Acknowledgments

This research was supported by Project PNRR P2: Establishment and operationalization of a Competence Center for Soil Health and Food Safety, Contract No. 760005/30.12.2022, Specific Project P1: Soil health and food safety by introducing a soil remediation protocol and developing a mobile remediation equipment to reduce the concentration of organic/inorganic pollutants and Project PN 23 04 02 01, Contract no.: 9N/ 01.01.2023 SUSTAIN-DIGI -AGRI, Innovative biofertilizer production technology used to restore soil biodiversity and reduce the effects of drought on agricultural lands.

References

1. Ahansal Y., Bouziani M., Yaagoubi R., Sebari I., Sebari K. and Kenny, L., 2022. Towards Smart

Irrigation: A Literature Review on the Use of Geospatial Technologies and Machine Learning in the Management of Water Resources in Arboriculture. *Agronomy*, 12, 297.

- 2. Al-Hchami S.H.J., Salloom Y.F., 2023. Biofertilizers, types, Benefits and their role in improving the growth of fruit trees and vegetative plants (Review), *Kirkuk Univ.J. for Agric. Sci.*, Vol. 14, No. 3, 47-56.
- 3. Ali A., Hussain T., Tantashutikun N., Hussain N. and Cocetta G., 2023. Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production, *Agriculture*, 13, 397.
- 4. Amogi B.R., Ranjan R. And Khot L.R., 2023. Mask R-CNN aided fruit surface temperature monitoring algorithm with edge compute enabled internet of things system for automated apple heat stress management, *Information Processing in Agriculture*.
- 5. Anand K., Jayakumar C., Muthu M., Amirneni S., 2015. Automatic drip irrigation system using fuzzy logic and mobile technology. In Proceedings of the 2015 IEEE technological innovation in ict for agriculture and rural development, pp. 54–58.
- 6. Arvind G., Athira V.G., Haripriya H., Rani R.A., Aravind S., 2017. Automated irrigation with advanced seed germination and pest control. In Proceedings of the 2017 IEEE Tech. Innov. in ICT for Agric. and Rural Development, pp. 64–67.
- 7. Baldi E., Gioacchini P., Montecchio D., Mocali S., Antonielli L., Masoero G., Toselli M., 2021. Effect of Biofertilizers Application on Soil Biodiversity and Litter Degradation in a Commercial Apricot Orchard. *Agronomy*, 11, 1116. <https://doi.org/10.3390/agronomy11061116>
- 8. Bartolini S., Massai R., Iacona C., Guerriero R. and Viti R., 2019. Forty-year investigations on apricot blooming: Evidences of climate change effects, *Scientia Horticulturae*, Vol. 244, pp. 399-405.
- 9. Basile B., Roushanel Y., Colla G., Soppelsa S., Andreotti C., 2020. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. *Scientia Horticulturae*, 267(), 109330–. doi:10.1016/j.scienta.2020.109330
- 10. Chatzistathis T., Kavvadias V., Sotiropoulos T., Papadakis I.E., 2021. Organic fertilization and tree orchards. *Agriculture*, 11, 692. <https://doi.org/10.3390/agriculture11080692>
- 11. Conesa M.R., Conejero W., Vera J., Ramírez-Cuesta J.M. and Ruiz-Sánchez M.C., 2019. Terrestrial and Remote Indexes to Assess Moderate Deficit Irrigation in Early-Maturing Nectarine Trees. *Agronomy*, 9, 630.
- 12. Conesa M.R., Conejero W., Vera J. and Ruiz-Sánchez M.C., 2021. Soil-based automated irrigation for a nectarine orchard in two water availability scenarios, Vol. 39, pages 421–439
- 13. Cujescu D., Nenciu F., Persu C., Găgeanu I., Gabriel G., Vlăduț N.-V., Matache M., Voică I., Pruteanu A., Bularda M. et al., 2023. Evaluation of an Optical Sorter Effectiveness in Separating Maize Seeds Intended for Sowing. *Appl. Sci.*, 13, 8892.
- 14. Dara S.K, 2019. The New Integrated Pest Management Paradigm for the Modern Age, *J.of Integr. Pest Management*, Vol. 10, Issue 1, 12.
- 15. Dela Cruz J.R., Baldovino R.G., Bandala A.A., Dadios E.P., 2017. Water usage optimization of Smart Farm Automated Irrigation System using artificial neural network. In Proceedings of the 2017 5th Int. Conf. on Inform. and Com. Tech., pp. 1–5.
- 16. Djalilov A.U., Gayipov I.K., Kenesbaev R.K., Abdunabiyyev Zh., Saidov A. and Axmedov M., 2022., Development Of Automated Intelligent Drip Irrigation System, *Galaxy International Interdisciplinary Research Journal*, 10(5), 828–841.
- 17. Eceoglu O., Ünal, İ., 2024. Development of a GIS-based Autonomous Soil Drilling Robot for Efficient Tree Cultivation and Orchard Planting. *Preprints*, 2024050396,
- 18. Freitas J., Silva P., 2022. Sustainable Agricultural Systems for Fruit Orchards: The Influence of Plant Growth Promoting Bacteria on the Soil Biodiversity and Nutrient Management, *Sustainability*, 14, 13952. <https://doi.org/10.3390/su142113952>.
- 19. Gao P., Xie J., Yang M., Zhou P., Chen W., Liang G., Chen Y., Han X., Wang W., 2021. Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM. *Agriculture*, 11, 635.
- 20. Ghobadpour A., Monsalve G., Cardenas A. and Mousazadeh H., 2022. Off-Road Electric Vehicles and Autonomous Robots in Agricultural Sector: Trends, Challenges, and Opportunities, *Vehicles*, 4(3), 843-864.
- 21. Głuszek S., Sas-Paszt L., Derkowska E., Sumorok B., Sitarek M., 2021. Influence of various biofertilizers on root growth dynamics in sweet cherry (*Prunus avium* L.) cv. 'Vanda', *Horticultural Science (Prague)*, 48, 3, pp. 105–116.
- 22. Guizani M., Dabbou S., Maatallah S., Montevercchi G., Hajlaoui H., Rezig M., Noureddine Helal A., Kilani-Jazi S., 2019. Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia, *Agricultural Water Management*, Vol. 217, 20, pp. 81-97.
- 23. Imteaj A., Rahman T., Hossain M.K., Zaman S., 2016. IoT Based Autonomous Percipient Irrigation

System Using Raspberry Pi. In Proceedings of the 2016 19th International Conference on Computer and Information Technology (ICCIT), pp. 563–568.

24. Kamaruddin F., Malik N.N.A., Murad N.A., Latiff N.M.A., Yusof S.K.S., Hamzah S.A., 2019. IoT-based intelligent irrigation management and monitoring system using arduino. *Telkomnika*, 17, 2378.

25. Karunathilake E. M. B. M., Tuan Le A., Heo S., Chung Y.S. and Mansoor S., 2023. The Path to Smart Farming: Innovations and Opportunities in Precision, Agriculture, 13(8), 1593.

26. King B.A., Shellie K.C., Tarkalson D.D., Levin, A.D., Sharma V., Bjorneberg D.L., 2020. Data-driven models for canopy temperature-based irrigation scheduling. *Trans. ASABE*, 63, 1579–1592.

27. Klimenko O.E. and Klimenko N.I., 2021. Phytomelioration of orchard agrocenosis as a way to enhance soil fertility and apple trees productivity, IOP Conference Series: Earth and Env.Sci., 862, 012093.

28. Klimenko O.E., Plugatar Y.V. & Klimenko, N.I., 2023. The Effect of Microbial Preparations on the Mineral Nutrition of Seedlings and the Productivity of a Fruit Nursery in the Steppe Crimea. *Russ J Plant Physiol* 70, 195, <https://doi.org/10.1134/S1021443723601866>.

29. Kumar P., Raj B., Kumar Sharma S., Raj B., 2023. Chapter Intelligent Irrigation Systems, Book AI for Big Data-Based Engineering Applications from Security Perspectives, CEC Pres part of Taylor& Francis Group, UK.

30. Kunal, S., Saha A. and Amin R., 2019. An overview of cloud-fog computing: Architectures, applications with security challenges., *Secur. Priv.*, 2, e72.

31. Lassoued R., Macall D.M., Smyth S.J., Phillips P.W. and Hesseln H., 2021. Expert insights on the impacts of, and potential for agricultural big data, *Sustainability*, 13, 2521.

32. Lei X., Yuan Q., Xyu T., Qi Y., Zeng J., Huang K., Sun Y., Herbst A. and Lyu X., 2023. Technologies and Equipment of Mechanized Blossom Thinning in Orchards: A Review, *Agronomy*, 13(11), 2753.

33. Lovell S. T., Dupraz C., Gold M., Jose S., Revord R., Stanek E. and Wolz K.J., 2017. Temperate agroforestry research: considering multifunctional woody polycultures and the design of long-term field trials. *Agroforestry Systems*.

34. Maatallah S., Guizani M., Elloumi O., Montevercchi G., Antonelli A., Ghrab M., Dabbou S., 2024. Yield and biochemical fruit quality of irrigated peach cultivars subjected to conventional farmer's fertilization practices in warm production area, *Journal of Food Composition and Analysis*, Vol. 129, 106121.

35. Manganaris G. A., Minas I., Cirilli M., Torres R., Bassi D., Costa G., 2022. Peach for the future: A specialty crop revisited, *Scientia Horticulturae*, Vol. 305, 111390.

36. Matache M.G., Gageanu I., Gheorghe G.V., Persu C., Chiritescu M. and Nitu M., 2023. Development Of A Tricopter-Hexarotor Agricultural Uav Destined For The Realization Of Precision Spraying Works, *Inmateh-Agricultural Engineering*, Vol.70, Issue2, pp. 11-20.

37. Matache M.G., Marin F.B., Gurau C., Gurau G., Marin M., Gageanu I., Ionescu A., 2022. Neural Network Testing For Spot-Application Of Phytosanitary Substances In Vegetable Crops Using A Self-Propelled Electrical Sprayer, *INMATEH-AGRICULTURAL ENGINEERING*, Vol. 68, Issue 3, pp. 471-480,

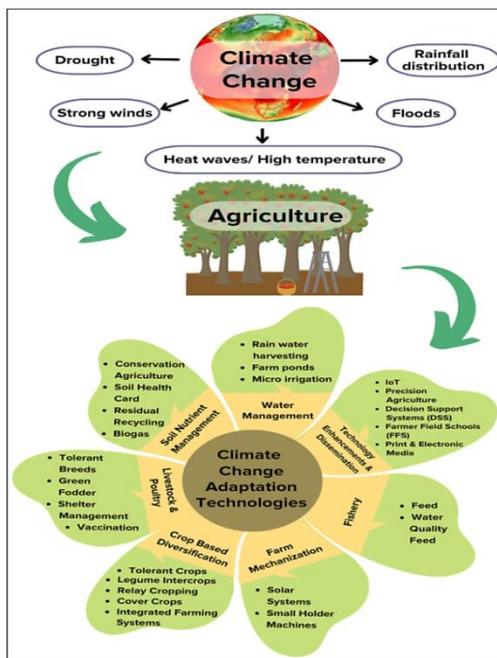
38. Mhamed M., Zhang Z., Yu J., Li Y. and Zhang M., 2024, Advances in apple's automated orchard equipment: A comprehensive research, *Computers and Electronics in Agriculture*, Vol. 221, 108926.

39. Millán S., Campillo C., Casadesús J., Pérez-Rodríguez J.M. and Henar Prieto M., 2020. Automatic Irrigation Scheduling on a Hedgerow Olive Orchard Using an Algorithm of Water Balance Readjusted with Soil Moisture Sensors, *Sensors*, 20(9), 2526.

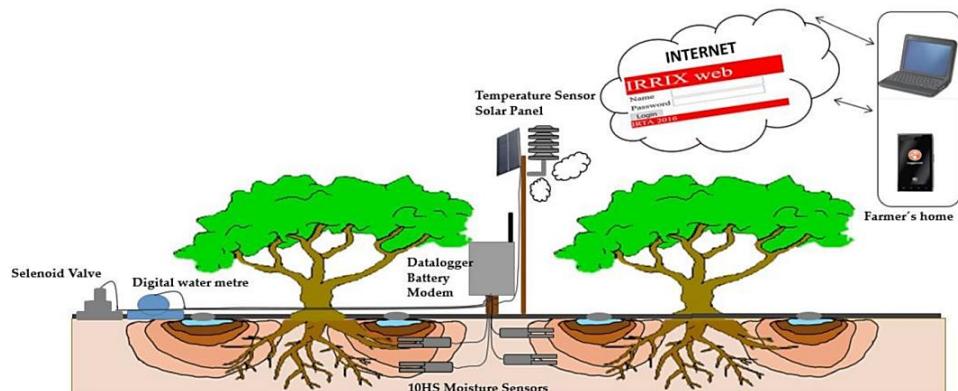
40. Millán S., Casadesús J., Campillo C., José Moñino M. and Henar Prieto M., 2019. Using Soil Moisture Sensors for Automated Irrigation Scheduling in a Plum Crop, *Water*, 11, 2061, <https://doi.org/10.3390/w11102061>.

41. Montanaro G., Xiloyannis C., Nuzzo V., Dichio B., 2017. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. *Sci. Hortic.*, 217, 92–101.

42. Morelli R., Zanzotti R., Bertoldi D., Zanoni S., 2023. Nitrogen in apple orchards under integrated and organic farming. In: IV Convegno AISSA under 40, Fisciano (SA): 228. handle: <https://hdl.handle.net/10449/81617>.


43. Mousavi S. M., Jafari A., Shirmardi M., 2024. The effect of seaweed foliar application on yield and quality of apple cv. 'Golden Delicious', *Scientia Horticulturae*, Vol. 323, 112529, <https://doi.org/10.1016/j.scienta.2023.112529>.

44. Nenciu F., Oprescu M.R., Biris S.-S., 2022. Improve the Constructive Design of a Furrow Diking Rotor Aimed at Increasing Water Consumption Efficiency in Sunflower Farming Systems. *Agriculture*, 12, 846.


45. Nenciu F., Stanciulescu I., Vlad H., Gabur A., Turcu O.L., Apostol T., Vladut V.N., Cocarta D.M., Stan C., 2022. Decentralized Processing Performance of Fruit and Vegetable Waste Discarded from Retail, Using an Automated Thermophilic Composting Technology. *Sustainability*, 14, 2835.

46. Nenciu F., Voicea I., Cocarta D.M., Vladut V.N., Matache M.G., Arsenoaia V.-N., 2022. "Zero-Waste" Food Production System Supporting the Synergic Interaction between Aquaculture and Horticulture. *Sustainability*, 14, 13396.
47. Niño J.M.D., Oliver-Manera J., Girona J. and Casadesús J., 2020. Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors. *Agric. Water Manag.*, 228, 105880.
48. Opresc, M.R., Biris S.-S., Nenciu F., 2023. Novel Furrow Diking Equipment-Design Aimed at Increasing Water Consumption Efficiency in Vineyards. *Sustainability*, 15, 2861.
49. Oukaira A., Benelhaouare A.Z., Kengne E. and Lakhssassi A., 2021. FPGA-Embedded Smart Monitoring System for Irrigation Decisions Based on Soil Moisture and Temperature Sensors. *Agronomy*, 11, 1881.
50. Pešaković M., Glišić I.S., Tomić J., Karaklajić-Stajić Ž., Milenković S., Cerović R., Rilak B., 2021. Designing and implementing innovative and sustainable practices in plum growing technology, *ISHS Acta Horticulturae* 1322: XII International Symposium on Plum and Prune Genetics, Breeding and Pomology, 10.17660/ActaHortic.2021.1322.35.
51. Pešaković M., Tomić J., Karaklajić Stajić Z., Rilak B., Mandić L., Đurović V., Đukić D., 2023. Meeting the challenge of sustainable agriculture: recent advances in orchard nutrition and protection management, *SCIDAR - A Digital Archive of the University of Kragujevac*, <https://scidar.kg.ac.rs/handle/123456789/19716>.
52. Phasnam K., Kassanuk T., Shinde P.P., Thakar C.M., Kumar Sharma D., Mohiddin Md.K. and Wahab Rahmani A., 2022. Application of IoT and Cloud Computing in Automation of Agriculture Irrigation, Quality Enhancement Techniques for Processing Fruits and Vegetables, Article ID 8285969.
53. Rajkumar M.N., Abinaya S., Kumar V.V., 2017. Intelligent irrigation system—An IOT based approach. In *Proceedings of the 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT)*.
54. Ru X., Zhou J., Gong K., He Z., Dai Z., Li M., Feng X., Yu Q., Feng H. and He J., 2023. Climate warming may accelerate apple phenology but lead to divergent dynamics in late-spring frost and poor pollination risks in main apple production regions of China, *European Journal of Agronomy*, Vol. 150, 126945.
55. Singh L. and Kumar Sadawarti R., 2020. A Review on role of bio-fertilizers in fruit crops, *Plant Archives* Vol. 20, Supplement 2, pp. 3154-3158.
56. Srivastava A.K., Wu Q.-S., Majid Mousavi S., Hota D., 2021. Integrated Soil Fertility Management in Fruit Crops: An Overview, *International Journal of Fruit Science*, Vol. 21, Issue 1.
57. Sumbul A., Ansari R. A., Rizvi R., Mahmood I., 2020. Azotobacter: A potential bio-fertilizer for soil and plant health management, *Saudi Journal of Biological Sciences*, Vol. 27, Issue 12, pp. 3634-3640, <https://doi.org/10.1016/j.sjbs.2020.08.004>.
58. Tace Y., Taba M., Elfilali S., Leghris C., Bensag H., Renault E., 2022. Smart irrigation system based on IoT and machine learning, *Energy Reports*, Vol. 8, Suppl. 9, pp. 1025-1036,
59. Vaishali S., Suraj S., Vignesh G., Dhivya S., Udhayakumar S., 2017. Mobile Integrated Smart Irrigation Management and Monitoring System Using IOT. In *Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCP)*, pp. 2164–2167.
60. Vallejo-Gómez D., Osorio M. and Hincapié C.A., 2023. Smart Irrigation Systems in Agriculture: A Systematic Review. *Agronomy*, 13, 342.
61. Verbiest R., Ruysen K., Vanwallegem T., Demeester E., Kellens K., 2020. Automation and robotics in the cultivation of pome fruit: Where do we stand today?, *Journal of Field Robotics*, vol. 38, pp. 513-531.
62. Wang J., He X., Gong P., Heng T., Zhao D., Wang C., Chen e Q., Wei J., Lin P. and Yang G., 2024. Response of fragrant pear quality and water productivity to lateral depth and irrigation amount, *Agricultural Water Management*, Vol. 292, 108652.
63. Yahya M.S., Atikah S. N., Mukri I., Sanusi R., Norhisham A. R., Azhar B., 2022. Agroforestry orchards support greater avian biodiversity than monoculture oil palm and rubber tree plantations, *Forest Ecology and Management*, Vol. 513, 1, 120177.
64. Zhang P., Wang S., Bai M., Bai Q., Chen Z., Chen X., Hu Y., Zhang J., Li Y., Hu X., Shi Y., and Deng J., 2022. Intelligent Spraying Water Based on the Internet of Orchard Things and Fuzzy PID Algorithms,. *Advanced Sensor Technologies in Agricultural, Environmental, and Ecological Engineering* Vol. 2022, Article ID 4802280.
65. https://www.mdpi.com/water/water-11-02061/article_deploy/html/images/water-11-02061-g001.png.
66. https://ars.els-cdn.com/content/image/1-s2.0-S0378377418316354-ga1_lrg.jpg.
67. https://ars.els-cdn.com/content/image/1-s2.0-S0378377423005176-ga1_lrg.jpg.

Tables and Figures

Fig. 1. Climate impacts on agriculture and adaptation technologies to combat climate change (Ali et al., 2023)

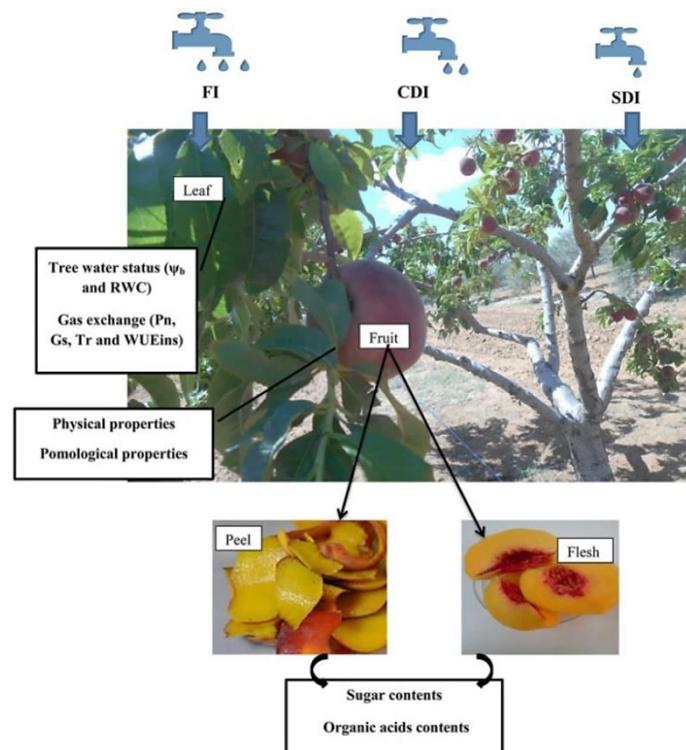
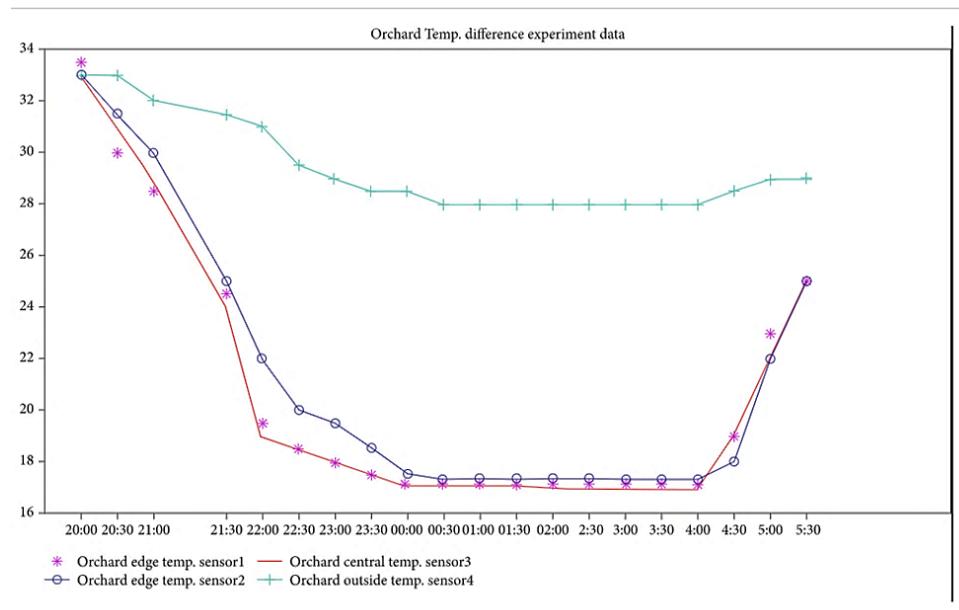
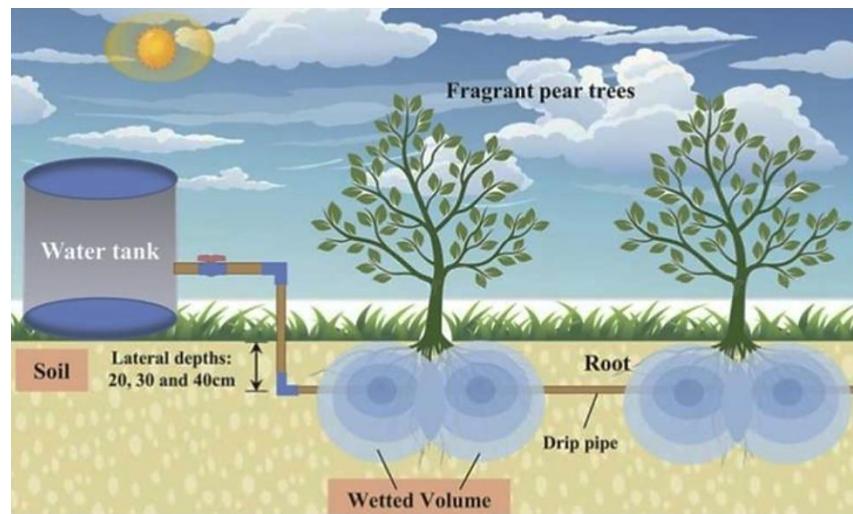


Fig. 2. Automatic irrigation system composed of two fundamental components: field equipment and IRRIX software (<https://www.mdpi.com>)


Table 1. Effects of irrigation on annual yield and number of fruits per tree in 2016, 2017, and 2018 (Millán S. et al., 2019)

Yield data	Treatments	2016	2017	2018
Yield (kg/ha)	C	15158 ± 2114.80	4076 ± 414.82 b	14491 ± 1090.55 b
	RDI	14240 ± 2081.19	6229 ± 587.07 a	16448 ± 1538.96 ab
	A	13697 ± 1652.65	7228 ± 818.03 a	19908 ± 1447.29 a
	Significance	n.s.	*	*
Number of fruit/trees	C	721 ± 113.62	130 ± 14.31 b	404 ± 29.08
	RDI	681 ± 99.08	203 ± 19.21 ab	456 ± 50.78
	A	629 ± 88.67	237 ± 27.50 a	485 ± 34.86
	Significance	n.s.	*	n.s.

* Indicates significant differences according to Duncan's multiple range test ($p = 0.05$); n.s. indicates not significant.


Fig. 3. Application of three different irrigation treatments: full irrigation (FI), sustained deficit irrigation (SDI) and cyclic deficit irrigation (CDI) (<https://ars.els-cdn.com/content/image>)

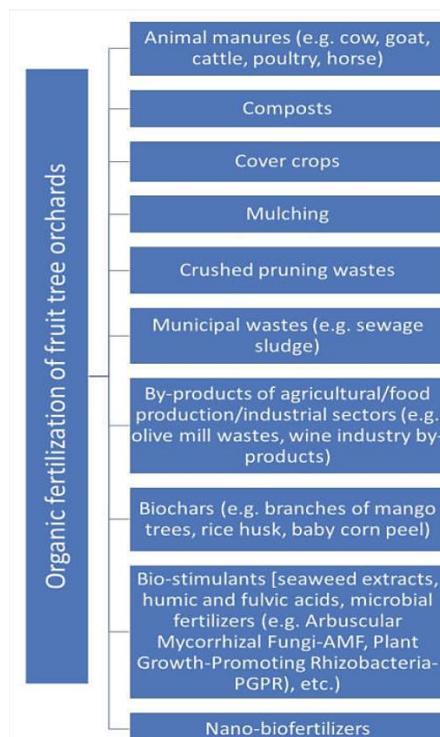

Fig. 4. Control data of temperature difference (Zhang et al., 2022)

Table 3. Technologies used in irrigation management (Adapted from Ahansal et al., 2022)

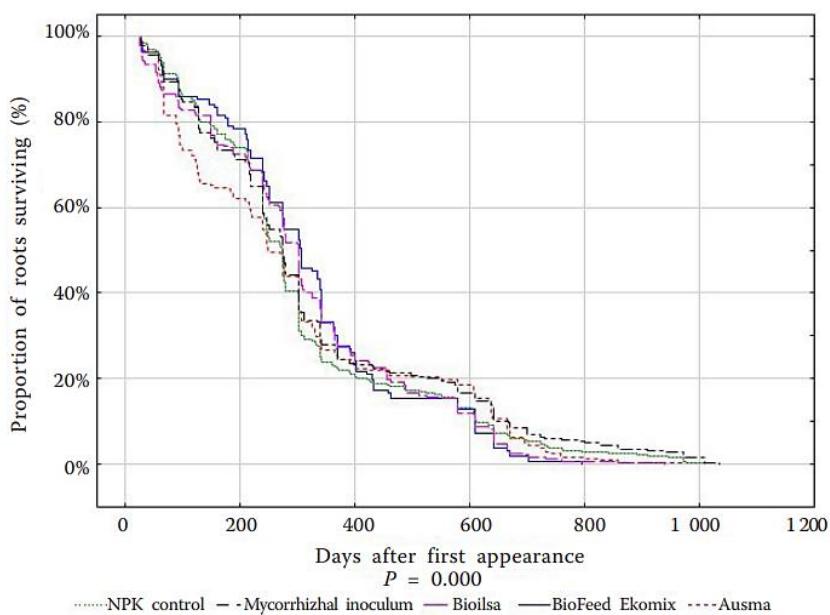

Techniques and equipment used		Mode of operation	Bibliographic references
Sensors/devices	Humidity and temperature sensors	The sensor first reads the soil moisture level data. When the humidity level is below the desired level, the humidity sensor sends the signal to the Raspberry Pi and sends an alert message that tells the water pump to start and supply water.	(Vaishali et al., 2017).
Water pump /	Water pump		
Processing system	Raspberry Pi		
Transmission mounts	Bluetooth		
Control interface	Mobile application		
Sensors/devices	Humidity and light sensors/ Water pump	The sensor first reads soil moisture level data to identify the level of soil dryness. The node then sends the information using a radio transceiver to the base station. The base station then sends both the data, the humidity level and the exposed light, to the storage server, which is a cloud server. After the treatment, the water pump will start and supply water.	(Kamaruddin et al., 2019).
System of processing	Arduino + server cloud		
Transmission mounts	Radio waves		
Control interface	Cloud web server + mobile app		
Sensors/Devices	Humidity and Light Sensors/Water Pump	The Raspberry Pi computer makes the decision to supply water or not based on all the data received from the sensors. If the conditions are met, the Raspberry Pi commands the relay module to turn on the water pump for a specified time, after which the computer commands the relay module to turn off the pump.	(Imteaj et al., 2016; Vallejo-Gómez et al., 2023; Kumar et al., 2023; Djalilov et al., 2022).
Processing system	Arduino + Raspberry Pi		
Transmission mounts	GSM și GPRS		
Control interface	Mobile application		
Sensors/devices	Humidity sensors, temperature/water pump, servomotor	The humidity and temperature sensors are combined with the input pins of the controller. The water pump and actuator are coupled to the output pins. If the sensors deviate from the defined range, the regulator starts the pump.	(Rajkumar et al., 2017; Matache, M.G. et al., 2023; Cujbescu et al., 2023).
Processing system	Arduino		
Transmission mounts	GSM		
Control interface	They are not mentioned		
Sensors/devices	Humidity and temperature sensors/valves, water meter	IRRIX receives sensor data once a day from the data logger. IRRIX in turn transmits to the data logger the irrigation rates for each sector, in mm, for the new day. The data logger starts irrigation and ends it when it has measured the programmed rate; Drip irrigation prevents wastage of water and evaporation.	(Niño et al., 2020; Anand et al., 2015).
Processing system	Data logger + web platform IRRIX Fuzzy logic controller		
Transmission mounts	3G		
Control interface	Web platform		
Sensors/devices	Humidity and temperature sensors/pumping system, mains, branches and manifolds (supply), side arms, valves, water meters, pressure and flow regulators, automatic devices, non-return devices, vacuum valves, relief valves of air, filtration system, chemical injection equipment, Drippers	The intelligent humidity sensor monitors both humidity and air temperature. The ratio of air humidity to the highest amount of moisture at a given air temperature is known as relative humidity. Therefore, this relative humidity becomes an essential component in the operation of water pumping systems.	(Oukaira et al., 2021; Nenciu et al., 2022; Matache et al., 2022; Nenciu et al., 2022)
Processing system	An intelligent system built using Field-Programmable Gate Array Technology (FPGA) and HDL language		
Transmission mounts	Radio waves		
Control interface	They are not mentioned		
Weather station	node sensors/devices/humidity and soil electrical conductivity sensors	The remote server receives the environmental data via the ZigBee and GPRS network, and the weather data directly via the GPRS network. The remote server then allows the use of the long-term memory (LSTM) deep learning algorithm to improve the prediction of soil moisture and electrical conductivity.	(Gao et al., 2021).
Processing system	Remote server		
Transmission mounts	ZigBee/GPRS		
Control interface	Webserver		
Neural networks	Machine learning algorithm, ANN feedforward ANN	Prediction and tackles drought conditions 1 Optimization of water resources in a smart farm Neural network models with one hidden layer with four neurons for sugar beet and five neurons for wine grape provided excellent predictions of well-watered canopy temperature 2	(Arvind et al., 2017; Dela Cruz et al., 2017; King et al., 2020)
Water sensors/devices	Fuzzy PID algorithm	The Fuzzy PID algorithm effectively controls the mist intensity precisely to achieve water conservation, in addition, useful for improving fruit quality and yield.	(Zhang et al., 2022)
Sensors/devices	Soil moisture sensors, temperature and humidity sensors, rain sensors, Node-RED platform	The database uses a multi-sensor data acquisition card and the Node-RED platform to collect data used in decision support models using machine learning.	(Tace et al., 2022; Oprescu et al., 2023; Nenciu F. et al., 2022)

Fig. 5. Subsurface drip irrigation (SSDI) system (https://ars.els-cdn.com/content/image)

Fig. 6. Categories/types of organic fertilizers for tree crops (Chatzistathis et al., 2021)

Fig. 7. Kaplan-Meier curves of root survival probability after the application of biofertilizers. P – probability c 2 calculated according to the Mantel procedure (Głuszek et al., 2021)

Table 4. PGPB studies on fruit orchards, Adaptation after (Freitas et al., 2022)

Fruit Crop	Microorganisms	Parameters Evaluated
Apple	<i>Azotobacter chroococcum, Bacillus subtilis, Bacillus megaterium</i>	Fruit yield, Nutrient efficiency
	<i>Bacillus spp., Burkholderia spp., Pseudomonas spp.</i>	Growth, Fruit yield
	<i>Pseudomonas putid, Bacillus subtilis</i>	Foliar application
	<i>Alcaligenes spp., Agrobacterium spp., Staphylococcus spp., Bacillus spp., Pantoea sp.</i>	Iron acquisition
	<i>Pseudomonas fluorescens</i>	Drought stress, Nutrient uptake, root grow
	<i>Bacillus sp., Bacillus amyloliquefaciens, Paenibacillus polymyxa</i>	Nutrient composition of apple leaves
	<i>Bacillus amyloliquefaciens</i>	Growth
	<i>Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida</i>	Soil properties; Nutrient availability
	<i>Bacillus subtilis; Streptomyces spp.</i>	Nutritional status; Growth
Plum	<i>Pseudomonas stutzeri; Bacillus toyonensis</i>	Growth; Acclimatization; Disease tolerance
	<i>Pantoea agglomerans</i>	Fruit traits; Chemical composition
	<i>Pseudomonas fluorescens; Pantoea agglomerans</i>	Rootstock growth
Peach	<i>Bacillus flexus</i>	Disease tolerance; Growth
	<i>Alcaligenes sp., Agrobacterium sp., Staphylococcus sp., Bacillus sp. and Pantoea sp.</i>	Iron acquisition
	<i>Azospirillum sp.; Frateuria aurantia; Bacillus megaterium</i>	Nutrient uptake; Growth
	<i>Bacillus subtilis; Bacillus tequilensis; Bacillus methylotrophicus</i>	Disease tolerance
	<i>Alcaligenes spp., Agrobacterium spp., Staphylococcus spp., Bacillus spp. and Pantoea spp.</i>	Growth and Nutrient content

Table 5. Effect of treatments and time on litterbags organic matter stability (Baldi et al., 2021)

Treatment	0	85	162	279	372
Control	0.381 ± 0.020^1	0.446 ± 0.02	0.684 ± 0.05	0.767 ± 0.09	0.699 ± 0.04
AMF- biofertilizer	0.381 ± 0.020	0.750 ± 0.03	0.675 ± 0.02	0.674 ± 0.05	0.633 ± 0.03
Trichoderma spp.	0.381 ± 0.020	0.617 ± 0.10	0.838 ± 0.04	0.532 ± 0.01	0.752 ± 0.08
Significance	$2SEM^2 = 0.030$				

¹ mean \pm standard error ($n = 3$); ² values differing by 2 standard error od means (SEM) are statistically different. Interaction treatment*days from litter deposition was significant at $p \leq 0.05$. gunoi