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Abstract

In the context of climate change, improving orchard crop management is essential for
effectively addressing the major challenges facing contemporary agriculture. Among these, the
thermal stress generated by extreme temperatures and climate variability has an important
negative impact on biodiversity, fertility, and soil health. In addition, it is vital to properly manage
pests and pathogens that can affect crop quality and yield, as well as to adapt to hyper-intensive
cultivation systems that aim to optimize the use of space and simplify harvesting processes. This
study explores a number of alternative, sustainable, and effective technologies to improve
productivity in orchards using advanced irrigation systems and the use of emergent biofertilizers.
These agricultural technologies facilitate precise and efficient management of nutrients, water
and biopesticide. The results of the conducted research have demonstrated that these innovative
technologies can contribute to a significant long-term increase in productivity, as well as improve
the quality of agricultural soils.
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1. Introduction

With a continuously growing world population estimated to reach 9 to 10 billion people by 2050,
precision agriculture has become increasingly important for modern agricultural research. Innovative
technologies applied in precision agriculture and data analysis are used to maximize crop yields, increase
agricultural productivity, reduce waste, and reduce the negative impact on the environment
(Karunathilake et al., 2023).

In recent decades, multiple studies have investigated the automation of tasks in an orchard, from
establishment (Eceoglu et al., 2024), cutting, pollination, and thinning (Lei et al., 2023), to spraying,
harvesting and sorting (Verbiest et al., 2020; Mhamed et al., 2024). Fruit crops are vulnerable to climate
change, and environmental stress. Often, the biodiversity of the soil in orchards and the ecosystem
services that they offer are threatened by a series of natural and anthropogenic factors; therefore,it is
essential to use sustainable alternatives in production management.

Establishing high-density orchards with small trees could reduce production costs and increase
orchard sustainability. Precision horticulture is achieved using modern sensors and devices for monitoring
production and diseases that suggest inputs for nutrition, irrigation, and phytosanitary guidelines
(Manganaris et al., 2022).To reduce the effects of high heat, growers use various management methods
such as evaporative cooling (EC), shade nets, and spray protectants (e.g., kaolin and calcium carbonate)
(Amogi et al., 2023). Frost exposure and poor pollination pose major challenges to growing perennial
orchard systems. Such climate risks are rather difficult to manage due to the complexity of future climate
predictions and difficulties in quantifying the risks of late spring frost and poor pollination (Ru et al., 2023).

Therefore, innovation in orchard systems is essential. A series of technologies that would have a
notable contribution in increasing productivity, sustainability, and efficiency in fruit cultivation could be:
precision agriculture; data analysis and predictive modeling (Lassoued et al., 2021; Kunal et al., 2019);
intelligent irrigation systems (Conesa et al., 2021; Millan et al., 2020); agroforestry and polyculture: the
implementation of agroforestry practices that integrate fruit trees with other crops, increasing biodiversity,
soil fertility and ecosystem services within orchard systems (Lovell et al., 2017; Yahya et al., 2022); Smart
Farming applications (Ghobadpour et al., 2022);, biological pest control: integrated pest management
strategies using natural predators and beneficial organisms to control pests and diseases in fruit
orchards, reducing reliance on chemical pesticides (Dara, 2019).
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2. Material and methods

Globally, agriculture has been severely affected by climate change. Rising temperatures, day-night
fluctuations, and seasonal instability of rainfall have led to an increase in extreme weather events such as
flash floods, droughts, and disease outbreaks. The impact of climate change has triggered the need to
adopt climate-smart adaptation systems to support year-round productivity and availability. Such
adaptation technologies are presented in figure 1 (Ali et al., 2023).

The flowering period is one of the most used widely used indices of the negative impact of climate
change on the biological processes of perennial plants. In this sense, over a long period of 40 years
(1973-2016), the climatic trend and their influence on the flowering intensity of several varieties of apricot
(Prunus armeniaca L.) grown in central ltaly were evaluated. Most of the varieties analyzed and selected
for different flowering periods showed significant flowering delays and reductions in flowering intensity.
The varieties with early flowering had the largest average change of almost 12 days and a reduction in
the intensity of flowering, which decreased to approximately 50% compared with the previous periods.
The autumn-winter cold variability in recent years may have a negative impact in the future with possible
geographical shifts of apricot cultivation areas to more suitable areas and considerable socioeconomic
inference (Bartolini et al., 2019).

For the irrigation of agricultural crops, the need for water is continuously increasing from year to
year, due to climate changes, and this situation may create problems in the future. The decrease in water
resources requires the urgent implementation of measures to ensure their rational use.

The purpose of a study was to test in field conditions and adapt, where necessary, an automated
irrigation system that allows the establishment of regulated deficit irrigation (RDI) strategies in a plum
orchard. For this purpose, an automatic device was used with an algorithm that combines irrigation
programing based on water balance with a feedback adjustment mechanism using 15 capacitive sensors
for continuous soil moisture measurement. A drip irrigation system was used with, an irrigation strip per
tree row located close to the base of the tree (figure 2) (Millan et al., 2019).

Fruits have been shown to contain significant levels of pesticide residues and chemical fertilizers
harmful to human health and the natural environment; therefore, it is necessary to develop alternatives to
reduce the use of fertilizers in fruit trees (Al-Hchami et al., 2023). A series of studies have described
possible ecological alternatives such as mycorrhizal fungi, organic compost, mulches, and biofertilizers.

3. Results and discussions

3.1. Innovative irrigation technologies

An automatic intelligent drip irrigation system for crop irrigation has been developed, where a
smartphone first takes a picture of the soil, calculates its moisture level, and periodically transmits data to
the microcontroller through a GSM module. Using the smart irrigation system saved about 42% and 15%
of the water consumption of traditional and drip irrigation methods (Djalilov et al., 2022). Establishing a
strategy of regulated deficit irrigation (RDI) avoided, water stress in the more sensitive stages of the
variety and induced moderate to severe stress in the less sensitive stages, table 1 (Millan S. et al.,
2019).The application of new irrigation techniques that save water without changing the performance of
trees and the quality of fruits represents a challenge in the field of research.

A study investigated the effect of applying three different treatments on the better management of
irrigation water without affecting the functions of trees. In addition to better management of irrigation
water, CDI also improved the quality of fruits by increasing the content of vitamin C and sugar both in the
skin and pulp (Guizani et al., 2019). Agriculture considerably reduces water reserve through irrigation;
therefore, at, the global level, scientists have analyzed sustainable solutions applying innovative
techniques to reduce high water consumption and avoid losses.

In the specialized literature, a series of technologies (unmanned aerial vehicles (UAV), machine
learning (ML), and the Internet of Things (IoT)) have been presented, which have demonstrated their
great potential in precision agriculture and irrigation management (table 3 ) (Ahansal et al., 2022).
According to the Food and Agriculture Organization of the United Nations (FAO), agriculture is the world's
largest consumer of water in terms of volume, but also a low-value and efficient user of water. This is why
there is a need to implement smart irrigation systems. Researchers present an intelligent irrigation system
based on the Internet of Things and cloud computing architecture. Machine learning algorithms have
been used to predict the appropriate amount of fresh water needed for a crop to be grown.As a result, by
applying this system, significant amounts of fresh water are saved (Phasinam et al., 2022). Water and
fertilization management are farmers’main concerns in obtaining high fruit quality and economic yield.

Fertilization management is essential not only for ensuring high productivity and fruit quality, but
also for maintaining soil health and water resources (Maatallah et al., 2024). Considering the influence of
climate on plant diseases, which can alter host physiology, resistance, and pathogen development rates,
sustaining fruit tree productivity is a major concern for farmers.
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Two treatments were applied to an early maturing nectarine orchard: control (well irrigated) and
precise deficit irrigation (PDI, based on soil water content thresholds). Precision deficit irrigation based on
soil water content (SWC) used 40% less total irrigation volume than a traditionally scheduled treatment
with no yield penalty in early maturing nectarine trees (Conesa et al., 2019 ). It is known that during the
ripening period of fruit, the temperature difference between the day and night of the orchard has a
substantial impact on the quality of the fruit. In this sense, in a work Smart Orchard Internet of Things
(loT) was designed uysing, the fuzzy PID (Proportion-Integration-Differentiation) algorithm to control the
spraying of water to regulate the temperature difference between day and night in the orchard. The
technology had a special contribution to the energy conversion process in the orchard and promoted the
accumulation of sugar from the fruits. The graph according to the temperature data is shown in figure 4
(Zhang et al., 2022).The results of a study determined that at a lateral depth of 30 cm subsurface drip
irrigation (SSDI) can enhance the quality of fragrant pear, increase yield by 13.14% to 47.03%, and
increase water productivity (WP) by 44.65% to 137.23% (Wang et al., 2024).

According to the analysis, average soil moisture content increased with lateral depth and irrigation
amount. During 2021-2023, the impact of single-factor lateral depth on soluble solids, total sugar, vitamin
C, sugar-acid ratio, solid-acid ratio, single fruit weight, and peel hardness was significant ( p < 0.05)
(Wang et al., 2024).

3.2. Biofertilization systems

A possible alternative to adapting trees to climate change is described in the specialized literature.
For example, the effect of arbuscular mycorrhizal fungi on the growth indices of micropropagated pear
rootstock improvement (Pyrodwarf) under drought stress were studied. Pear seedlings treated with
arbuscular mycorrhizal fungi showed better acclimation, growth, and tolerance to normal and drought
stress conditions (Srivastava et al., 2021).

Organic compost plays a particularly important role in sustainable management of agricultural
practices. The yield of tree crops and the quality of fruits can be improved through organic fertilization,
and interest in ecological products is continuously growing. In the future, it is estimated that obtaining
superior quality of fruit will play an essential role in the market for certified organic products because of,
the higher prices obtained (Chatzistathis et al., 2021; Montanaro et al., 2017). Figure 6 shows the types of
organic fertilizers that can be used to increase the productivity of tree crops; according to researchers,
most of them play a vital role in increasing tree yields and partially replacing inorganic fertilizers (to
decrease high fertilization rates (Chatzistathis et al., 2021).

In an experiment, the impact of the innovative organic fertilizers: Biollsa, BioFeed Ecomix, Ausma
biostimulation, and Mykoflor mycorrhizal inoculum on the growth characteristics of the fine roots of
"Vanda" cherry was analyzed compared with mineral NPK fertilization. The results indicated that there
were significant differences in the median root lifespan and, the visible number of roots between
treatments. Fertilization with BioFeed Ecomix significantly extends the average lifespan of cherry roots.
After applying the mycorrhizal substrate and Biollsa fertilizer, severel roots were observed, figure 7
(Gtuszek et al., 2021).

Another study presents the influences of an innovative liquid product based on vermicompost
enriched with selected strains of beneficial microorganisms (VCMo) on the morphometric characteristics
(fruit weight, length and width), chemical properties (total phenolic and anthocyanin content, and
antioxidant activity) and internal quality characteristics (soluble solids content and firmness) of the plum
cultivars 'Stanley' and 'Cadanska Lepotica'. The results of this study show that liquid vermicompost
enriched with selected strains of beneficial microorganisms (VCMo) has a significant potential in obtaining
a sustainable production of plums and indicates the importance of adopting the declared growth
technology as a powerful tool in orchard management (Pe3akovic et al., 2021 ). Table 4 presents specific
examples of the application of plant growth-promoting bacteria (PGPB) in fruit orchards for different
species can be found. In the case of apples, fruit yield (kg tr -1 ), was improved when PGPB was applied
(12-13%) compared with the control (11%) Adaptation after (Freitas et al., 2022).

To study the effecst of orchard grass and microbial preparations (MP), an experiment was carried
out on calcareous alluvial meadow soil in Crimea. Grass mixtures (MH) were investigated: MH2:
multiflorous ryegrass + blue alfalfa; MH3; meadow grass + meadow clover; MH4: multifloral ryegrass +
blue alfalfa + meadow fescue + meadow clover + awnless rump. The control was natural grass (NG). PM:
Azotobacterin (AB) and Complex of Microbial Preparations (CMP) were used. The results show that the
combination of MH3 and CMP is most effective on the content of phosphorus and potassium and
increasing the productivity of apples by 22-43% (Klimenko et al., 2021). Another research established that
MPs increase the total nitrogen content of the leaves of apricot seedlings: Azotobacterin (AB) by 73%;
mahaleb cherry: Diazophyte (DA) with 25%. The content of total phosphorus in the leaves of apricot and
almond seedlings increased by 9-29% under the influence of Phosphoenterin (PE) and CMP compared
with the control. Because of improving mineral nutrition in fruit plant seedlings using MP, the production of
standard planting material per surface unit increased. The most effective treatments were PE on peach
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and cherry seedlings, CMP on apricot and cherry plum (Klimenko et al., 2023). Azotobacter has also
been analyzed by other researchers, who demonstrated its potential as a bio-fertilizer for soil and plant
health management (Sumbul et al., 2020).

The aim of this study was to analyze the nitrogen in a Gala apple orchard in Trentino over a five-
year trial period (2018-2022) under two agronomic managements: integrated (INT) fertilized once a year
with mineral products and organic matter (ORG) amended with mature manure every three years. The
use of organic matrices in organic farming, in addition to having an amendment effect, has been shown to
act as a fertilizer in apple orchards, reducing environmental impact (Morelli et al., 2023).

An experiment carried out in an apricot orchard in Italy investigated whether the supply of
biofertilizers could differently stimulate the native microbiota, thereby determining different patterns of
organic material decomposition processes. After the application of two different types of biofertilizers
(AMF and Trichoderma spp.) and comparison with the unfertilized control for one year, Trichoderma spp.
showed faster and greater degradation of litter than the AMF biofertilizers. The results show that the
foundation can be laid for efficient orchard use. AMF and Trichoderma biofertilizers were Iplaced under
the dropper closest to the plant through a syringe to simulate fertilization, and their effects are shown in
table 5 (Baldi et al., 2021). Foliar application of A. nodosum seaweed extract on trees from an apple
orchard produces a larger leaf surface and an increased photosynthetic capacity for organically grown
apples (Mousavi et al., 2024).

In "Flordaprince" peaches, foliar or soil application of a humic acid solution (0.25-0.50%; 5 L per
tree) significantly increased fruit size (Basile et al., 2020). The effect of biological fertilizers on the yield of
apple crops was also demonstrated in a study that analyzed the potential for improving photosynthesis by
applying bacteria such as Mucosas, Vertigo, Humus & Humus Active + Aktywit pm in relation to N, P, and
K, and the results were encouraging (Singh at al., 2020). In Serbia, a new formula has been developed
for a liquid biofertilizer derived from vermicompost and enriched with different strains of beneficial
microorganisms from the genera Bacillus, Pseudomonas, Azotobacter, and Trichoderma. The
contribution of biofertilizers to increasing productivity, quality characteristics, and economic efficiency has
been demonstrated with, respect to ecological and health safety standards (PeSakovi¢ et al., 2023).

4. Conclusions

This paper demonstrates the urgent need to adopt alternative technologies and solutions to reduce
the negative impacts of climate change and traditional agricultural practices on fruit crops.Thermal stress
is one of the biggest challenges for farmers because it causes serious damage to fruit trees and soil in
orchards. As agriculture is known as one of the largest consumers of water globally, intelligent irrigation is
an important step toward making water management more efficient for agricultural crops. The presented
solutions describe a series of advanced technologies that through the Internet of Things (artificial
intelligence) and cloud computing architecture can develop complex systems: automated drip irrigation
systems that have demonstrated the system's self-learning capacity, deficit irrigation strategies (CDI) with
potential in managing irrigation water but also the ability to improve fruit quality, underground drip
irrigation (SSDI), and web applications that manage databases collected from the field with the help of
various devices (drones, sensors, loT platforms).

In addition to intelligent irrigation systems, the fertilization of fruit crops with organic fertilizer has an
essential role in improving vegetative growth, increasing tree productivity, and obtaining the healthiest
vegetable products by reducing chemical residues. In conclusion, organic fertilization brings multiple
benefits to agroecosystems by increasing productivity, improving physical properties and increasing soil
fertility while respecting health safety and reducing environmental pollution.

These positive aspects encourage the field of research to obtain even more advanced solutions to
improve the management of fruit crops.
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Fig. 1. Climate impacts on agriculture and adaptation technologies to combat climate change

Selenoid Valve

(Ali et al., 2023)

Temperature Sensor

Solar Panel

Fig. 2. Automatic irrigation system composed of two fundamental components: field equipment

and IRRIX software (https://www.mdpi.com)

Table 1. Effects of irrigation on annual yield and number of fruits per tree in 2016, 2017, and 2018

(Millan S. et al., 2019)

Yield data Treatments 2016 2017 2018
C 15158 + 2114.80 4076 £414.82 b | 14491 +1090.55 b
Yield RDI 14240 + 2081.19 6229 +£587.07 a | 16448 + 1538.96 ab
(kg/ha)
A 13697 + 1652.65 7228 £+818.03 a | 19908 + 1447.29 a
Significance n.s. * *
C 721 £ 113.62 130 + 14.31 b 404 + 29.08
Number of RDI 681 +99.08 203 + 19.21 ab 456 +50.78
fruit/trees
A 629 + 88.67 237 +27.50 a 485 + 34.86
Significance n.s. * n.s.

* Indicates significant differences according to Duncan’s multiple range test (p = 0.05); n.s. indicates not significant.
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Gas exchange (Pn,
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Sugar contents
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Fig. 3. Application of three different irrigation treatments: full irrigation (Fl), sustained deficit
irrigation (SDI) and cyclic deficit irrigation (CDI) (https://ars.els-cdn.com/content/image)

4 Orchard Temp. difference experiment data

32

30

28

26

24 4

20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 00:00 00:3001:00 01:30 02:00 2:30 3:00 3:30 4:00 4:30 500 5:30

# Orchard edge temp. sensorl —— Orchard central temp. sensor3
—&- Orchard edge temp. sensor2 —+— Orchard outside temp. sensor4

Fig. 4. Control data of temperature difference (Zhang et al., 2022)
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Table 3. Technologies used in irrigation management (Adapted from Ahansal et al., 2022)

Techniques and equipment used Mode of operation Bibliographic
references
Sensors/devices  Humidity and temperature sensors Water The sensor first reads the soil moisture level (Vaishali et al.,
pump / data. When the humidity level is below the 2017).

Processing system Raspberry Pi

Transmission mounts Bluetooth

Control interface Mobile application

desired level, the humidity sensor sends the
signal to the Raspberry Pi and sends an
alert message that tells the water pump to
start and supply water.

Sensors/devices Humidity and light sensors/ Water The sensor first reads soil moisture level (Kamaruddin et
pump data to identify the level of soil dryness. The | al., 2019).
System of node then sends the information using a
processing Arduino + server cloud radio transceiver to the base station. The
Transmission mounts Radio waves base station then sends both the data, the
Control interface Cloud web server + mobile app humidity level and the exposed light, to the

storage server, which is a cloud server. After

the treatment, the water pump will start and

supply water.
Sensors/Devices Humidity and Light Sensors/Water The Raspberry Pi computer makes the (Imteaj et al.,
Pump decision to supply water or not based on all 2016; Vallejo-
Processing system Arduino + Raspberry Pi the data received from the sensors. If the Gomez et al.,

Transmission mounts GSM si GPRS

Control interface Mobile application

conditions are met, the Raspberry Pi
commands the relay module to turn on the
water pump for a specified time, after which
the computer commands the relay module to
turn off the pump.

2023; Kumar et
al., 2023; Djalilov
et al., 2022).

Sensors/devices Humidity sensors, temperature/water

pump, servomotor

Processing system Arduino

Transmission mounts GSM

Control interface They are not mentioned

The humidity and temperature sensors are
combined with the input pins of the
controller. The water pump and actuator are
coupled to the output pins. If the sensors
deviate from the defined range, the regulator
starts the pump.

(Rajkumar et al.,
2017; Matache,
M.G. et al., 2023;
Cujbescu et al.,
2023).

Sensors/devices
sensors/valves, water meter

Humidity and temperature

Processing system Data logger + web platform
IRRIX

Fuzzy logic controller

Transmission mounts 3G

Control interface Web platform

IRRIX receives sensor data once a day from
the data logger. IRRIX in turn transmits to
the data logger the irrigation rates for each
sector, in mm, for the new day. The data
logger starts irrigation and ends it when it
has measured the programmed rate; Drip
irrigation prevents wastage of water and
evaporation.

(Nifo et al., 2020;
Anand et al.,
2015).

Sensors/devices Humidity and temperature
sensors/pumping system, mains, branches and manifolds
(supply), side arms, valves, water meters, pressure and flow
regulators, automatic devices, non-return devices, vacuum
valves, relief valves of air, filtration system, chemical injection
equipment, Drippers

Processing system An intelligent system built
using Field-Programmable Gate Array Technology (FPGA)
and HDL language

Transmission mounts Radio waves

Control interface They are not mentioned

The intelligent humidity sensor monitors both
humidity and air temperature. The ratio of air
humidity to the highest amount of moisture
at a given air temperature is known as
relative humidity. Therefore, this relative
humidity becomes an essential component
in the operation of water pumping systems.

(Oukaira et al.,
2021; Nenciu et
al., 2022;
Matache et al.,
2022; Nenciu et
al., 2022)

Weather station node sensors/devices/humidity and
soil electrical conductivity sensors

Processing system Remote server

Transmission mounts ZigBee/GPRS

Control interface Webserver

The remote server receives the
environmental data via the ZigBee and
GPRS network, and the weather data
directly via the GPRS network. The remote
server then allows the use of the long-term
memory (LSTM) deep learning algorithm to
improve the prediction of soil moisture and
electrical conductivity.

(Gao et al., 2021).

Neural networks Machine learning algorithm,

ANN feedforward

ANN

Prediction and tackles drought conditions 1
Optimization of water resources in a smart
farm

Neural network models with one hidden
layer with four neurons for sugar beet and
five neurons for wine grape provided
excellent predictions of well-watered canopy
temperature 2

(Arvind et al.,
2017; Dela Cruz
et al.,2017; King
et al., 2020)

Water sensors/devices Fuzzy PID algorithm

The Fuzzy PID algorithm effectively controls
the mist intensity precisely to achieve water
conservation, in addition, useful for
improving fruit quality and yield.

(Zhang et al,
2022)

Sensors/devices Soil moisture sensors, temperature
and humidity sensors, rain sensors, Node-RED platform

The database uses a multi-sensor data
acquisition card and the Node-RED platform
to collect data used in decision support
models using machine learning.

(Tace et al.,
2022;0prescu et
al., 2023; Nenciu
F. et al., 2022)
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Water tank

Fig. 5. Subsurface drip irrigation (SSDI) system (https://ars.els-cdn.com/content/image)

l Animal manures (e.g. cow, goat,
cattle, poultry, horse)

Municipal wastes (e.g. sewage
sludge)

By-products of agricultural/food
production/industrial sectors (e.g.
olive mill wastes, wine industry by-

products)

Ml Biochars (e.g. branches of mango
trees, rice husk, baby corn peel)

Organic fertilization of fruit tree orchards

Bio-stimulants [seaweed extracts,
humic and fulvic acids, microbial
fertilizers (e.g. Arbuscular
Mycorrhizal Fungi-AMF, Plant
Growth-Promoting Rhizobacteria-
PGPR), etc.)

— Nano-biofertilizers

Fig. 6. Categories/types of organic fertilizers for tree crops (Chatzistathis et al., 2021)
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Fig. 7. Kaplan-Meier curves of root survival probability after the application of biofertilizers. P —
probability ¢ 2 calculated according to the Mantel procedure (Gluszek et al., 2021)

Table 4. PGPB studies on fruit orchards, Adaptation after (Freitas et al., 2022)

Fruit Microorganisms Parameters Evaluated
Crop
Azotobacter chroococcum, Bacillus subtilis, Bacillus megaterium g;ﬁ;ggg Nutrient
Bacillus spp., Burkholderia spp., Pseudomonas spp. Growth, Fruit yield
Pseudomonas putid, Bacillus subtilis Foliar application
é\(/ec;aggenes spp., Agrobacterium spp., Staphylococcus spp., Bacillus spp., Pant Iron acquisition
Apple Drought stress, Nutrient
Pseudomonas fluorescens
uptake, root grow
Bacillus sp., Bacillus amyloliquefaciens, Paenibacillus polymyxa Nutrient composition of
apple leaves
Bacillus amyloliquefaciens Growth
Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida S\?zlalilzfiﬁg/ rties; Nutrient
. . Nutritional status;
Bacillus subtilis; Streptomyces spp. Growth
Plum . . . Growth; Acclimatization;
Pseudomonas stutzeri; Bacillus toyonensis .
Disease tolerance
Fruit traits; Chemical
Pantoea agglomerans o
composition
Pseudomonas fluorescens; Pantoea agglomerans Rootstock growth
Peach Disease tolerance;

Bacillus flexus

Growth

Alcaligenes sp., Agrobacterium sp., Staphylococcus sp., Bacillus sp.
and Pantoea sp.

Iron acquisition

Azospirillum sp.; Frateuria aurantia; Bacillus megaterium

Nutrient uptake; Growth

Bacillussubtilis; Bacillustequilensis; Bacillusmethylotrophicus

Disease tolerance

Alcaligenes spp., Agrobacterium spp., Staphylococcus spp., Bacillus spp.
and Pantoea spp.

Growth and Nutrient
content

Table 5. Effect of treatments and time on litterbags organic matter stability (Baldi et al., 2021)

Treatment 0 85 162 279 372
Control 0.381+0.020 ' 0.446 + 0.02 0.684 + 0.05 0.767 £ 0.09 0.699 + 0.04
AMEF- biofertilizer 0.381 + 0.020 0.750 + 0.03 0.675 +0.02 0.674 +0.05 0.633 +0.03
Trichoderma spp. 0.381 +0.020 0.617 £ 0.10 0.838 + 0.04 0.532+ 0.01 0.752 +0.08
Significance 2SEM?=0.030

" mean + standard error (n = 3); 2 values differing by 2 standard error od means (SEM) are statistically different.
Interaction treatment*days from litter deposition was significant at p < 0.05. gunoi
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